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A NEW CRITERION FOR 7 TO BE A 
FOURTH POWER (mod p) 

BY 

RICHARD H. HUDSON AND KENNETH S. WILLIAMS* 

ABSTRACT 

A new application is made of Muskat's evaluation of the cyclotomic numbers of 
order fourteen, to obtain a necessary and sufficient condition for seven to be a 
fourth power modulo a prime ~- 1 (mod 28). 

(1.1) 

I. Introduction 

Let p be  a pr ime -= 1 (mod 4). For  small p r imes  q with ( p / q )  = + 1, necessary 

and sufficient cri teria for  q to be a fourth power  modu lo  p have  tradit ionally 

been given in te rms  of congruences  modu lo  q involving the integers  a and b 

defined by p = a 2 +  b 2, a = 1 (mod 4), b = 0  (mod 2) (see for  example  [2], [6], 

181). 
Recent ly  o ther  pa ramet r i c  represen ta t ions  of p have  been used to give similar 

criteria. For  example ,  if p =- 1 (mod 16) then there  are integers  x~, x~, x.~, x4 such 

that 

{ p = x ~ + 2 x ~ + 2 x ~ + 2 x ~ ,  xj------1 (mod 8), 

2 2 
2XiX3 = X2 -- 2X2X4-- X,,  

(see for  example  [5, p. 338] and [12, p. 366]) and Evans  [4] has shown that  

(1.2) 2 is a four th  power  (mod p )  r x3 --- 0 (rood 4). 

We  note  that  (1.1) has exactly four  solutions,  namely  (x~, +-x2, x3,---x4) and 

(x,, - - -x4 , -x3 ,  T-x2), so that  x~ and tx31 are uniquely de t e rmined  by (1.1). If 
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p -=- 1 (mod 20) it follows from the work of Dickson [3, p. 402] that there are 

integers x~, x2, x3, x, such that 

x~+50x2+50x~+125x~, 16p=  2 2 
(1.3) 

X 2 - -  XlX4 = 3 4X2X3 X 2, 

and the authors [7] have proved that 

(1.4) 

x , -  1 (mod 5), 

5 is a fourth power (mod p) 

{x~ = 4  (mod 8), if x~----0 (mod 2), 

X t  - -  3X4 (mod 8), if x~ -= 1 (mod 2). 

All four solutions of (1.3) are given by 

(x,, +- x2, +- x3, x4), ( x .  +- -v x2, -x.), 

so that x~ and [x,I are uniquely determined by (1.3). 

In this note, we obtain a result for 7 to be a fourth power (mod p) analogous to 

(1.2) and (1.4). This is done using Muskat's formulae [13] for the cyclotomic 

numbers of order fourteen in conjunction with an index formula given by the 

authors in [7]. The details for q = 7 are considerably more complicated than 

those for q = 2 and q = 5, as the diophantine system corresponding to (1.1) and 

(1.3) in this case involves six parameters and the group of solutions is cyclic of 

order six. Our main result is given in Theorem 5. 

2. Criteria for 2 to be a seventh power (rood p)  

Let p be a prime -- 1 (mod 7), so that p = 14f + 1. Let g be a fixed primitive 
root (mod p). For integers h and k the mnnber of solutions (s,t)  with 

0 -< s, t < (p - 1)/7 of the congruence 

(2.1) gTS§ + 1 -- gT,+~ (mod p) 

is denoted by (h, k)7. The number (h, k)7 is called the cyclotomic number of 

order 7. The Dickson-Hurwitz sum of order 7 is defined by 

U7(i,j) = ~ (h, i- jh)7.  
h=O 

As in [16, pp. 609-611], we can define integers x~, x2, x3, x4, xs, x6 (depending 

upon g) by 
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x, = 2 - p + 7(0, 0)7 + 14(1, 2)7 + 14(1, 4)7 + 14(2, 4)7, 

x2 = 2(0, 1)7 + (0, 3)7 - (0, 4)7 - 2(0, 6)7 + 2(1, 3)7 - 2(1, 5)7, 

x3 = - (0, 1)7 + 2(0, 2)7 - 2(0, 5)7 + (0, 6)7 + 2(1, 3)7 - 2(1, 5)7, 

(2.2) x4 = (0, 2)7 + 2(0, 3 ) 7 -  2(0, 4 ) 7 -  (0, 5 ) 7 -  2(1, 3)7 + 2(1, 5)7, 

xs = - 2(1, 2)7 + (1, 4)7 + (2, 4)7, 

x~ = - (1, 4)7 + (2, 4)7. 

It  is k n o w n  [10], [16, t h e o r e m  2] tha t  (x,,  x:,  x3, x4, xs, x~) is a so lu t ion  of  t he  

d i o p h a n t i n e  s y s t e m  

72p = 2x~ + 42(x~ + x~ + x])  + 343(x~ + 3x 26), 

1 2 x ~ -  1 2 x ] +  1 4 7 x ~ -  441x~ 

(2.3) 

x , -=  1 ( m o d  7), 

+ 56XIX6 + 24X2X3 -- 24X2X4 + 48X3X4 + 98XsX6 = 0, 

12x_~- 12x42 + 4 9 x ~ -  147x6 z 

+ 28x,x5 + 28x tx6 + 48x2x3 + 24xzx4 + 24x3x4 + 490xsx6 = 0. 

T h e  s u m s  BT(i, 1) (0 =< i =< 6) h a v e  b e e n  g iven  in t e r m s  of  xl ,  x~, x3, x4, xs, x6 (see  

[9], [11]): 

(2.4) 

84B7(0, 1) = 12x~ + 12p - 24, 

84B7(1, 1) = - 

84B7(2, 1) = - 

84B7(3, 1) = - 

84B7(4, 1) = - 

84B7(5, 1) = - 

84B7(6, 1) = - 

2x~ + 42x2 + 49x5 + 147x6 + 12p - 24, 

2xt + 42x3 + 49xs + 147x6 + 12p - 24, 

2x,  + 42x4 - 98x5 + 12p - 24, 

2xt - 4 2 x 4 -  98x5 + 12p - 24, 

2xl - 4 2 x 3 +  4 9 x 5 -  147x~ + 12p - 24, 

2x~ - 42x2 + 49xs + 147x6 + 12p - 24. 

W e  also de f ine  i n t ege r s  t and  u by  

(2.5) 
6t = p - 2 - 7(0, 0 ) 7 -  21(1, 3 ) 7 -  21(1, 5)7, 

2u  (0, 1)7 + (0, 2)7 - (0, 3)7 + (0, 4)7 - (0, 5)7 - (0, 6)7 - (1, 3)7 + (1, 5)7, 

(see [11, p. 298], [14, p. 64]), so tha t  (t, u )  sat isf ies  
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(2.6) p = t 2 + 7u 2, t - 1 (mod 7). 

It is shown in [16, theorem 2] that (x~, x2, x3, x,, xs, x6) is not  equal to ei ther  of the 

two "tr ivial"  solutions ( - 6t, - 2u, ___ 2u, u 2u, 0, 0) of the system (2.3). There  are 

exactly six "non- t r iv ia l"  solutions of  (2.3). These  are 

(Xl ,  X2, X3, X4, Xs, X6), 

(x , ,  x , ,  - x4, - x2, - ~ ( x ,  + 3x~) ,  � 8 9  x~)),  

(x , ,  x , ,  - x2, x , ,  - � 8 9  3x~) ,  - �89 + x 0 ) ,  

(2.7) 
(x , ,  - x , ,  x2, - x~, - � 8 9  3x~) ,  - -',(x5 + x 0 ) ,  

(X, ,  --  X3, X4, X2, --  �89 "~" 3 X 6 ) , / ( X 5  -- X6)),  

(Xl ,  - -  X2, --  X3, --  X4, Xs, X6), 

see for  example  [9, p. 144]. 

Clearly f rom the first equat ion  of (2.3), we have 

LEMMA 1. X5 -- X6 (mod 2). 

Leona rd  and Williams [9] have shown 

LEMMA 2. 2 is a seventh power (mod p )  r x~ = 0 (rood 2). 

The  next lemma is a special case of a result of Alderson  [1, theorem 1]. 

LEMMa 3. 2 is a seventh power (mod p )  

r (0, 1)7, (0, 2)7, �9 �9 (0, 6)7 are all even. 

From the evaluat ion of the cyclotomic numbers  of order  7 given by Leona rd  

and Williams [11], we have (with a minor  misprint corrected in the first equat ion)  

LEMMA 4. 

588(0, 1)7 = 12p -- 72 + 24t + 168U -- 

588(0, 2)7 = 12p -- 72 + 24t + 168U -- 

588(0, 3)7 = 12p -- 72 + 24t -- 168U -- 

588(0, 4)7 = 12p - 72 + 24t + 168u - 

588(0, 5)7 = 12p - 72 + 24t - 168u - 

588(0, 6)7 = 12p - 72 + 24t - 168u - 

6x~ + 8 4 x 2 -  42x3+ 147x5 + 147x6, 

6x + 84x3 + 42x4 - 294x6, 

6xj + 42x2 + 8 4 x 4 -  147x5 + 147x6, 

6 x ~ -  4 2 x 2 -  8 4 x 4 -  147x5 + 147x6, 

6x~ - 84x3 - 42x4 - 294x6, 

6xl - 84x2 + 42x3 + 147x5 + 147x6. 
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From L e m m a s  2, 3 and 4 we obtain  

LEMMa 5. I[ 2 is a seventh power (mod p) then x z , . . . ,  x~ are all even and 

x5 ---- x~ (mod 4). 

PROOF. By L e m m a s  3 and 4, we have  

2xj + 4x2 - 2x3 + 3x5 + 3x6-= 4 (mod 8), 

2xl+4x3+2Xa+2X~ - 4  (mod 8), 

2x, + 2x2 + 4x4 - -  3x~ + 3x,  -= 4 (mod 8), 

2x~ - 2x2 + 4 x 4 -  3x~ + 3x, = 4 (mod 8), 

2x~ + 4X3 -- 2X4 + 2x6 = 4 (mod 8), 

2x~ + 4x2 + 2x3 + 3xs + 3x~ ~- 4 (mod 8), 

f rom which it follows easily that  

x_, -= x3 - x4 -= 0 (rood 2). 

Moreove r ,  by L e m m a  2, we have  Xl = 0 (mod 2). The  first two congruences  now 

give x5 = x~---0 (mod 2) and the third gives x5 =-x~ (mod  4). 

H e n c e  by L e m m a s  1 and 5 we have  

LEMMA 6. I f  (Xl, X2, X3, X4, Xs, X6) is such that 

x5 -= x6 -= 1 (mod 2) 

or  

x~ --- x ,  ~ 0 (mod 2), x5 ~ x~ (mod 4), 

then 2 is not a seventh power (mod p) .  

Next  we p rove  

LEMMA 7. I f  f is even and (x~, x~, x3, x4, x~, x6) is such that 

x5 -= x6 = 0 (mod 2), x5 -= x6 (mod 4), 

then 

(i) 
(ii) 

x, =-2 (mod 4), 

x 2 = - x ~ x 4 = - x s = - x 6 = - O  (mod 4), 

(iii) x~ = x6 (mod 8), 

(iv) x2 + x3 + x,  --- 2f  (mod 8). 
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As xs = x~ = 0 (mod 2), x5 --- x~ (mod 4), we can define integers  y~ and 

x5 = 2y~ + 4z, x~ = 2y,. 

Tak ing  each of the three  equat ions  in (2.3) modulo  64, we obtain  

(2.8) x 2 , + 2 1 ( x ~ + x ~ + x ~ ) + 2 4 ( y ~ + y 6 z  + z2) ~ 4 -  8f  (mod 32), 

(2.9) 3x~ - 3x Y, - 4y 2 _ 4z 2 _ 4x,y~ + 6x2x3 - 6x2x~ + 12x3x, --- 0 (mod 16), 

2 2 2 2_}_ 3X3--3X4+8y6+8y6z + 4 Z  28xty~ 

(2.10) + 28x ,z  + 12x2x3 + 6xzx,  + 6x3x, =- 0 (mod 16). 

Clearly f rom (2.9) and (2.10) we have  

x2 = x3 -= x4 (mod 2). 

Tak ing  (2.8) modu lo  8, and suppos ing  that  x2 = x3 = x,  -= 1 (mod 2), we obtain  

x ~ + 7 = 4 (mod 8), 

which is impossible.  H e n c e  we must  have  

x, = x2 = x3 -= x4 = 0 (mod 2). 

Thus  we can define integers y~ (i = 1, 2, 3,4) by x, = 2y,. Using these in (2.8), 

(2.9), (2.10), we obtain  

(2.11) 

(2.12) 

(2.13) 

y 2 + 5(y ~ + y 2 + y ]) _ 2(y ~ + y~z + z 2) =_ 1 - 2f  (mod 8), 

- y 22 + y ] - y 26 - z 2 + 2y, y,  + 2y2y3 + 2y2y4 = 0 (mod 4), 

- y~ + y~ + 2y~ + 2y6z + z 2 + 2y,y6 + 2y ,z  + 2y2y4 + 2y3y4 ~ 0 (mod 4). 

F rom (2.11), (2.12), (2.13) we obtain ,  as f is even,  

y~+  y~+ y~+  y~+2(y~ ,+  y6z + z 2) -= 1 (mod4) ,  

y2 + y, + y6 + z -= 0 (mod 2), 

y3 4- y4 4- Z ~ 0 (mod  2). 

These  congruences  give the fol lowing possible  residues (rood 2 ) fo r  yl, y2, y3, y,, 

y6, z. 
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yt y2 y3 y4 y6 Z 

1 0 0 0 0 0 

1 1 1 0 0 1 

1 0 1 1 1 0 

1 1 0 1 1 1 

The second of these possibilities cannot occur in view of (2.13) and the third and 

fourth in view of (2.12). Hence we have 

x~ --- 2 (mod 4), x2 -= x3 = x4 = x5 --- x6 = 0 (mod 4), x5 =- x6 (mod 8), 

proving (i), (ii) and (iii). Finally, from (2.11), we have, with y2 = 2z2, y3 = 2z3, 

y4 = 2Z4, 

1 +4(z~+  z~+ z4 z)~  1 - 2 [  (mod8),  

that is 

giving 

Z2 + Z3 "~ Z4 ~ f /2  (mod 2), 

x2 + x3 + x, -- 2[ (mod 8), 

which is (iv). 

Putting Lemmas 1, 2, 6 and 7 together we obtain 

THEOREM 1. I[ [ is even then 

2 is a seventh power (rood p) r x5 -- x6 ~ 0 (mod 2), 

or, equivalently, 

2 is not a seventh power (mod p) 

r 1 6 2  (mod2)  or xs-x6==-O (rood2),  

3. Congruences for indg(2) and ind.(7) 

x5 -= x~ (mod 4), 

X5 ~ X6 (mod 4). 

If n is an integer not divisible by p, the index of n with respect to g, written 

indg(n), is that integer b such that n - gb (mod p), 0 =< b =< p - 2. We prove the 

following more precise form of Theorem 1. 

THEOREM 2. I f  f is even, then 
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ind. (2) - '  

0 (mod 7) , / f  x s-= x6 = 0 (mod 2), xs -= x. (rood 4), 

-1 (mod7)./fxs-x~=-I (mod2). xs#x,(mod4). 

_ + 2 ( m o d 7 ) , / f x s ~ - x 6 ~ - 0 ( m o d 2 ) ,  x ~ # x 6 ( m o d 4 ) ,  

--- 3 (rood 7), /.f xs ---- x,-= 1 (mod 2), xs --- x, (mod 4). 

PROOF. In view of Theorem 1 we need only treat the cases when ind~ (2) # 0 

(rood 7). As 2 is not a seventh power (mod p), by Theorem l, we have 

x s - x ~ - - - l ( m o d 2 )  or x~---x6-=0(mod2), x~+x6---2(mod4).  

From Muskat's table 3 [13, p. 277] for the cyciotomic numbers of order 14 and 

the expressions for B~(i, 1) (1 _-< i _-< 6) given in (2.4), we obtain 

4{(4.  8 ) 1 4 -  (1,  11),4} = X5 + X~,, 

2{(1,  9),~ -- (2 .8) ,4}  = X.. 

4{(2,  1 1 ) , 4 -  (2 ,4) ,4}  = x . -  x . .  

4{(2 .5 ) , 4  - (2 .4) ,4}  = x~ - x~, 

2 { ( 1 . 6 ) , 4  - ( 2 . 8 ) , 4 }  = x , .  

4{(4 .8 ) , 4  - (1,  4),4} = xs  + x6, 

if ind, (2)--- I (mod 7), 

if ind~ ( 2 ) - 2  (mod 7), 

if ind~ (2) - 3 (mod 7), 

if ind~ (2)---4 (mod 7), 

if indg (2) --- 5 (rood 7), 

if indg (2)---6 (mod 7). 

If indg (2) --- --- 1 (mod 7), we have xs + x6 =- 0 (rood 4), and thus by Theorem 1, 

we have xs -= x~ ~ 1 (mod 2), x5 # x, (mod 4). 
If ind, (2) -= - 2 (mod 7), we have x~ -= 0 (mod 2), and thus by Theorem 1, we 

obtain x5 - x~ =- 0 (mod 2), x5 # x~ (mod 4). 
If ind, (2)~  +-3 (mod 7), we have x5-= x6 (rood 4), and so by Theorem 1, we 

deduce that x5 =-x6 =-1 (mod 2). 

This completes the proof of Theorem 2. 

An immediate application of theorem 1 of [7] (with e = 7, k = 4, l = 14) gives 

LEMMA 8. If f is even, then 

i n d , ( 7 ) -  2 2 2 2 (2i + 1, 7j + k),4 +.f (mod 4). 
i = 0  j = 0  k = I 

Applying Muskat's formulae [13, tables 1 and 3] for the cyclotomic numbers of 

order 14 in Lemma 8, we obtain, using (2.4) and Lemma 7 (iv), the following 

theorem. 
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THEOREM 3. 

indg (7) -= 

I f  f is even, then 

1 - �89 x ,  ( m o d  4),  

f - 1 - �89 + 3x~) (mod 4), 

f -  1 - ~ ( x 5 -  3x~) (mod 4), 

f - 1 + xs (rood 4), 

if indg (2)---0 (mod 7), 

/f indg (2) -~ -- 1 (rood 7), 

if indg (2) -= + 2 (mod 7), 

if ind~ (2)~- + 3 (mod 7). 

Putting Theorems 2 and 3 together  we obtain 

THEOREM 4. I f  f is even, then 

f 1-�89 (mod 4), ifxs==-x~=-O (mod 2), xs=-x6 (mod 4), 

f - 1 - �89 + 3x~) (mod 4), if x5 -- x6 =- 1 (mod 2), x~ r x6 (rood 4), 
ind,  (7) --- 

f - 1 - �89 - 3x~) (mod 4), if xs - x~ =- 0 (rood 2), x5 N x~ (rood 4), 

f - 1 + x5 (mod 4), if x5 - x~ ~- 1 (mod 2), x5 =- x~ (mod 4). 

Clearly, f rom (2.7), if (x~,x2, x3, x4, x~,x~) is a solution of (2.3) satisfying 

x 5 -  x6---0 (mod 2), xs---x~ (mod 4), all six solutions satisfy the same congru- 

ences. If not, then two of the six solutions of (2.3) satisfy x5 -= x 6 -  1 (mod 2), 

x~ r x~ (rood 4); two satisfy xs-= x6 -~ 0 (mod 2), x5 N x~ (mod 4); two satisfy 

x~ -= x6 - 1 (mod 2), x5 --- x, (mod 4). Hence,  in this case, we can always choose a 

non-trivial solution of (2.3) satisfying x5 =-- x6 -= 1 (mod 2), x5 - x6 (mod 4). Thus 

Theorem 4 yields our main result. 

THEOREM 5. Suppose f is even and (x,, x2, x3, x4, xs, x~) denotes a non-trivial 

solution of  (2.3). I f  x~ =-0 (mod 2), then 

7 is a fourth power (mod p)  r x, --- 2 (mod 8). 

Ifx~ ~ 0 (mod 2), we can choose the solution so that x5 --- x6 -= 1 (mod 2), x5 -= x6 

(mod 4). Then 

7 is a fourth power (mod p)  r x5 --- 1 - f (mod 4). 

4. Four  numerical  examples (see table 2 of [15]) 

EXAMPLE 1. p = 29, f = 2 

(x,, x2, x3, x4, x5, x6) = (1, 3, - 2, - 2, - 1, - 1), 

x s = - l - l - f ( m o d 4 ) ,  
7 =- 84 (mod 29). 

EXAMPLE 2. p = 1 9 7 ,  f = 1 4  

(X,, Xz, X3, X4, Xs, X6) = ( -- 13, 1, 8, 6, 1, -- 3), 
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x~ = 1 ~ 1 - j r  ( rood  4),  

7 -  1062 ( m o d  197), (106/197)  = - 1. 

EXAMPLE 3. p = 673, jr = 48 

(X,, X2, X3, X4, Xs, X~) = (22, 20, 8, -- 12, -- 4, -- 4), 

x ,  = 2 2 =  - 2 ( m o d  8), 

7 ~- 3962 ( m o d  673), (396/673)  = - 1. 

EXAMPLE 4. p = 953, f = 68 

(Xt, Xz, X3, X4, Xs, X6) = (50,  12, 8, -- 28,  4,  4) ,  

X t = 50 --= 2 ( m o d  8), 

7 = 1604 ( rood  953). 
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